A Wasserstein Gradient Flow Approach to Poisson-Nernst-Planck Equations

نویسندگان

  • DAVID KINDERLEHRER
  • XIANG XU
چکیده

The Poisson-Nernst-Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear diffusion. The proof of the main results relies on the derivation of extra estimates based on the flow interchange technique developed by Matthes, McCann, and Savaré in [25].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solutions of the full set of the time-dependent Nernst-Planck and Poisson equations modeling electrodiffusion in a simple ion channel

The concept of electrodiffusion based on the Nernst-Planck equations for ionic fluxes coupled with the Poisson equation expressing relation between gradient of the electric field and the charge density is widely used in many areas of natural sciences and engineering. In contrast to the steady-state solutions of the Nernst-Planck-Poisson (abbreviated as NPP or PNP) equations, little is known abo...

متن کامل

A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.

The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion c...

متن کامل

Solutions to a nonlinear Poisson-Nernst-Planck system in an ionic channel

A limiting one-dimensional Poisson-Nernst-Planck (PNP) equations is considered, when the three-dimensional domain shrinks to a line segment, to describe the flows of positively and negatively charged ions through open ion channel. The new model comprises the usual drift diffusion terms and takes into account for each phase, the bulk velocity defined by (4) including the water bath for ions (see...

متن کامل

An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodiffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. S...

متن کامل

On gradient structures for Markov chains and the passage to Wasserstein gradient flows

We study the approximation of Wasserstein gradient structures by their finitedimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015